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Whole Genome Shotgun Sequencing

Multiple (Unsequenced) Genome Copies

* ¥ *
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Reads
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Sequenced Genome

~GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC..
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From Metagenomics to Single Cell Sequencing

e Traditional microbial genome sequencing requires isolating a pure
strain and reproducing it in a ‘culture’ under controlled laboratory
conditions. But >99% of bacteria cannot be cultured.

e Metagenomics enables studies of organisms not easily cultured in a
laboratory. It uses collective sequencing of non-identical cells.

e Until recently, metagenomics was the only option for studies of
microbial communities. However, metagenomics provides
information about only a few genes (across many species).
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From Metagenomics to Single Cell Sequencing

e Traditional microbial genome sequencing requires isolating a pure
strain and reproducing it in a ‘culture’ under controlled laboratory
conditions. But >99% of bacteria cannot be cultured.

e Metagenomics enables studies of organisms not easily cultured in a
laboratory. It uses collective sequencing of non-identical cells.

e Single Cell Bacterial Genomics: Complementing gene-centric
metagenomics data with whole-genome assembly of uncultivated
organisms.

1000s of genes sequenced from a single cell
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Single Cell Sequencing via MDA

Multiple Displacement Amplification

displacing
3. Isothermal reaction (30°C)

\ \\ 1. Random hexamer primers
\ — 2. Phi29 DNA polymerase Strand
> >

>

Genomic DNA

F.B. Dean, J.R. Nelson, T.L. Giesler, R.S. Lasken (2001). Genome Res. 11:1095-9
F.B. Dean, S. Hosono, L. Fang, et al. (2002). PNAS 99:5261-6

Roger Lasken’s lab developed Multiple Displacement Amplification (MDA).
e More effective than PCR for amplification of a single cell.

TempliPhi and GenomiPhi (GE Healthcare) and REPLI-g (Qiagen).
REPLI-g: fragments ~ 2 — 100 kb; usually > 10 kb on average.
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Sequencing Coverage

Normal multicell vs. single cell E. coli
[1lumina GA IIx paired-end sequencing, 100 bp reads, ~ 600x coverage

Coverage

[ | [ | | I
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E. coli genome (Mbp)

e Lander-Waterman model predicts ~15x coverage needed for complete E. coli assembly.
e Assumes uniform coverage; error-free reads; and no repeats in genome.

e For our single cell E. coli assembly, 600x average coverage still has some gaps since
there are positions with no reads.

< UCSD 28



Distribution of Coverage

Empirical distribution of coverage
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A cutoff threshold will eliminate about 25% of valid data in the single cell
case, whereas it eliminates noise in the normal multicell case.
Chitsaz, et al., Nat. Biotechnol. (2011).
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Insert Size Distribution

[1lumina GA IIx sequencing of E. coli, 600x coverage

Normal
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Chitsaz, et al., Nat. Biotechnol. (2011).
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Number of read pairs
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De Bruijn Graph for Genome Assembly

e Introduced by Pavel Pevzner in 1989 (based on DNA arrays)

P.A. Pevzner, J Biomol Struct Dyn (1989) 7:63-73.
R. Idury, M. Waterman, J Comput Biol (1995) 2:291-306.

o Adapted to Sanger sequencing (EULER) and 2"¢ generation

sequencing (EULER-SR).

P.A. Pevzner, H. Tang, & M.S. Waterman, PNAS (2001) 98(17):9748-9753.
P.A. Pevzner, H. Tang, H. & G. Tesler, Genome Res. (2004) 14:1786-1796.
M.J. Chaisson & P.A. Pevzner, Genome Res. (2008) 18:324-330.

e Used in many other short-read assemblers.

(Velvet: D.R. Zerbino, & E. Bimey, Genome Res. (2008) 18:821-829. )

ALLPATHS: Butler et al, Genome Res. (2008) 18(5):810-820.
ABySS: Simpson et al, Genome Res. (2009) 19:1117-1123.
éOAPdenovo: Li et al, Genome Res. (2010) 20(2): 265-272.

< UCSD 3




De Bruiyn Graph of a Genome

Toy example: shred genome into 3-mer vertices, 4-mer edges

/Vertices: k-mers from the sequence )
Edges: (k+1)-mers from the sequence

k=3: 4-mer wxyz gIives Wwxy — X)z
Genome: Eulerian path through graph
\_ (using edge multiplicities) )

Genome: ABCDEFGHIJCDEFGKL

HLJ
GHI
1JC
JCD FGH
ABCD
>@ >@ >0
ABC BCD CDE DEF EFG FGK GKL

P. Pevzner, J Biomol Struct Dyn (1989) 7:63—73
R. Idury, M. Waterman, J Comput Biol (1995) 2:291-306
P. Pevzner, H. Tang, M. Waterman, PNAS (2001) 98(17):9748-53
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Same De Bruijn Graph from Perfect Reads

Toy example: shred reads into 3-mer vertices, 4-mer edges

/Vertices: k-mers from the reads ) ﬁ(eads (but order would be\
Edges: (k+1)-mers from the reads random in real data):
k=3: 4-mer wxyz gIives Wwxy — X)z ABCDEEG
Reads: short paths through graph (red) DEFGHI ]
Genome: long path through graph ) GHIJCDE
IJCDEFG
k CDEFGKL /
HIJ
GHI
1JC
JCD FGH
ABCD
>@® >@® >@®
ABC BCD CDE DEF EFG FGK GKL

= UCSD
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Condensed graph

Toy example: 3-mer vertices, long edges=contigs

/_\EFGHIJCDE
@ >@ >@

ABCDE CDEFG EFGKL
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Condensed graph

Toy example: vertices=contigs, edges=2-mer overlaps
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SPAdes genome assembler

/ Error correctior j—‘\
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SPAdes genome assembler
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Graph Simplification in SPAdes

P: Erroneous edges Q: correct alternative
»O—»O—»Q

TCGGTGAAAGAGCTTT P \\\

CGGTGAACGAGCTTTG
GGTGAAAGAGCTTTGA CQ
O—»0O0—»0O

GTGAAAGAGCTTTGAT

Bulge from error in middle of read

Tip from error near start/end of read

O—»O0—>»0O0—»O »O—»O—>»O—»O0—»0O
TCGGTGAAAGAGCTTT ()
CGCTGAAAGAGCTTTG ‘Jiﬂ

GGTGAAAGAGCTTTGA
GTGAAAGAGCTTTGAT

Chimeric connection joining two
distant parts of genome O—>O0—>0—>0—>0—»0 >O—>»O0—>»0

TCGGTGAAAGAGCTTT Qq
CGGTGAAAGAGCTTTG P
ACATCGTAAGCTTTGC
TCGTAGTAGCCGATTC Q-

CGTAGTAGCCGATTCG  O—pO—O »>O—>O—>O—>O—>O—>O
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Graph Simplification in SPAdes

* We use local coverage, topology, and lengths to decide how to simplify
the graph.

e Smart scheduling: For bulges and chimeric connections, SPAdes
examines all edges in order from lowest to highest coverage. For tips,
we go 1n order by length.

This 1s inspired by, but improves upon, E+V-SC (Chitsaz et al, 2011),
which used a gradually increasing threshold to discard low-coverage k-
mers.

o Efficient bookkeeping allows us to map all reads to the final contigs
using the actual logic of graph simplification, and produce an accurate
SAM file placing reads onto contigs, instead of relying on external
alignment tools to guess how the reads were mapped.
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Multisized de Bruiyn graph

e Smaller values of k make the graph more connected but more tangled.

e Larger values of k make the graph less tangled but less connected.

e SPAdes combines multiple values of k to get the best of all worlds.
e Also see IDBA (Peng et al., 2010).

Multisized de Bruijn graph

for k=2,3
> 10 ACAT o3¢ ATCA
GACA
TCAG
= GGAC
CAGA
AGGA
TCAG AGAT
TAGG
CAGA ATAG ~ CATA
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Many repeats can be resolved using either
single reads (bottom) or paired reads (top),
but it depends on repeat length, read length,
and insert size.

Is the correct path between red reads short
(passing through lower edge)
or long (passing through upper edge)?

51



Paired reads

e Insert size varies in different read pairs.

e The genomic distance between two edges can be estimated when
they are linked by many read pairs.

e Edges A & B could be separated by 72 bp, or by 72 + (13+72),
etc. A distance histogram (using nominal insert sizes) reveals the
actual distances and lets us correct for insert size variation.
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Repeats and paired de Bruiyn Graph

[P. Medvedev, S. Pham, M. Chaisson, G. Tesler, P. Pevzner,}

J Comput Biol (2011) 18(11):1625-1634

e The paired de Bruijn graph generalizes de Bruijn graphs to paired reads.

e Vertices are pairs of k-mers at a fixed distance (after adjusting for small
variations in insert size).

e Graph 1s much sparser than the normal de Bruijn graph, which helps
resolve repeats.

e SPAdes implements a generalization of this.

ATC|GAT
CAT|AGA TCAJATA S o >~ cam
ACA|CAG CAG|TAG / e, AGIAG
AC|CA
GAC|TCA AGA|AGG ATIGA
GA|GG
GGAJATC GAT|GGA
GA[TC
AGG|CAT TAGlACﬁTNGAC \
GG|AT S~
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Benchmarking SPAdes:
90% of E. coli genes fully captured from single cell data

Table 1. Comparison of assemblies for single-cell (ECOLI-SC) and standard (ECOLI-MC) datasets.

v = il
= = K o 3
h n —_ _8- +:(—3.\ ?\i - E -'e :)D g
2 > B % s 3 g %8 £
5 = : S S B
2 # 2 5 E S = s& S3
Single-cell E. coli (ECOLI-SC)
EULER-SR 1344 26662 126616 4369634 87.8 21 11.0 3457
SOAPdenovo 1240 18468 87533 4237595 82.5 13 99.5 3059
Velvet 428 22648 132865 3533351 75.8 2 1.9 3117
Velvet-SC 872 19791 121367 4589603 93.8 2 1.9 3654
E+V-SC 501 32051 132865 4570583 93.8 2 6.7 3809
SPAdes-single reads 1164 42492 166117 4781576 96.1 1 6.2 8383
SPAdes 1024 49623 177944 4790509 96.1 1 52
Normal multicell sample of E. coli (ECOLI-MC)
EULER-SR 295 110153 221409 4598020 99.5 10 52 4232
IDBA 191 50818 164392 4566786 99.5 4 1.0 4201
SOAPdenovo 192 62512 172567 4529677 97.7 1 26.1 4141
Velvet 198 78602 196677 4570131 99.9 4 1.2 4223
Velvet-SC 350 52522 166115 4571760 99.9 0 1.3 4165
E+V-SC 339 54856 166115 4571406 99.9 0 2.9 4172
SPAdes-single reads 445 59666 166117 4578486 99.9 0 0.7 4246
SPAdes 195 86590 222950 4608505 99.9 2 3.7 4268

% UCSD Bankevich et al., J. Comp. Biol., 2012



E. coli mapped contigs (single cell)

Coverage
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New Genome assembled with E+V-SC

Deltaproteobacteria (marine bacteria) single cell assembly (2011)
ARTICL ES.

inature
: biotechnology

Efficient de novo assembly of single-cell bacterial
igenomes from short-read data sets

Hamxdmza Chitsaz"*, Joyclyn L Yee-Greenbaum?®, Glenn Tesler®, Mary-Jane Lombardo?, Christopher L Dupont‘. i
[ lonathan H Badger®, Mark Novotny?, Douglas B Rusch?, Louise ] Fraser”, Niall A Gormley”, Ole Schulz- lhcglafF‘
Gcoffrc) P Smith®, Dirk ] Evers®, Pavel A Pevzner’ & Roger S Lasken?

; Whole genome amplification by the multiple displacement amplification (MDA) methed allows sequencing of DNA from

i single cells of bacteria that cannot be cultured. Assembling a genome is challenging, however, because MDA generates highly
i nonuniform coverage of the genome. Here we describe an algorithm tailored for short-read data from single cells that improves
! assembly through the use of a progressively increasing coverage cutoff. Assembly of reads from single Escherichia coli and

: Staphylococcus aureus cells captures >91% of genes within contigs, approaching the 95% captured from an assembly based

;on many E. coli cells. We apply this method to assemble a genome from a single cell of an uncultivated SAR324 clade of

i Deltaproteobacteria, a cosmopolitan bacterial lineage in the global ocean. Metabolic reconstruction suggests that SAR324 is

1 aerobic, motile and chemotaxic. Our approach enables acquisition of genome assemblies for individual uncultivated bacteria

: using only short reads, providing cell-specific genetic information absent from metagenomic studies.

Chitsaz et al, Nat. Biotech. (2011) 29:915-921.
Collaboration between UCSD, JCVI, Illumina.
E+V-SC: EULER-SR error correction + we modified Velvet for single cell coverage issues

= UCSD
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New Genome assembled with E+V-SC

Deltaproteobacteria (marine bacteria) single cell assembly results

Uncultivated bacteria from a seawater sample.

Assembler # of # Conserved
contigs single copy
genes
Velvet 1,856 11,531 3,921,396 55/111
(46%)
E+V-SC 823 30,293 4,282,110 75/111
(67%)

N50 = the contig length at which longer contigs represent half of

the total assembly length.
Chitsaz, et al., Nat. Biotechnol. (2011)

= UCSD



New Genome assembled with E+V-SC

Deltaproteobacteria (marine bacteria) single cell assembly features

Assembly size 4.3 Mb
Estimated genome size 4.9-6.4 Mb
# genes 3811

Chitsaz, et al., Nat. Biotechnol. (2011)



New Genome assembled with E+V-SC

Deltaproteobacteria single cell assembly completeness

e JCVI annotated assembly with their standard pipeline.

e Comparison to other microbial genomes using metrics from
Nelson et al., Science (2010) 328: 994-999
shows similar completeness to other draft microbial genomes

# tRNA genes 20 out of 20 types

# tRNA synthetases 17 of 21 types

# rRNAS 1 each of 5S, 16S, 23S
# conserved single copy genes 75 out of 111 (67%)

# conserved single copy gene clusters 58 out of 66 (87%)
Chitsaz, et al., Nat. Biotechnol. (2011)

<= UCSD 1



New Genome

Deltaproteobacteria assembly comparison

Assembler | NSO (bp) |Length (bp)
(contigs > 200 bp)

E+V-SC 30,293 4,255,983

SPAdes 75,366 4,826,160

# Long ORFs
(> 600 bp)
2,377

2,600

82



Ongoing SPAdes Collaborations

e Human Microbiome Project
(Ashlee Earl, Broad Institute)

* Sequencing uncultivated bacteria representing gray matter of life
(Roger Lasken, Venter Institute)

e Sequencing pathogens 1solated from hospital environment
(Jeff McLean, Venter Institute)

e Sequencing antibiotics producing bacteria
(Bill Gerwick, Scripps Institute of Oceanography)

e Sequencing drug-resistant pathogens
(Nik Schork, Scripps Translational Medicine)

< UCSD 85
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